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The conjugate pairing of Lyapunov exponents for a field-driven system with
smooth inter-particle interaction at constant total kinetic energy was first
proved by Dettmann and Morriss [Phys. Rev. E 53:R5545 (1996)] using simple
methods of geometry. Their proof was extended to systems interacting via hard-
core inter-particle potentials by Wojtkowski and Liverani [Comm. Math. Phys.
194:47 (1998)], using more sophisticated methods. Another, and somewhat
more direct version of the proof for hard-sphere systems has been provided by
Ruelle [J. Stat. Phys. 95:393 (1999)]. However, these approaches for hard-
sphere systems are somewhat difficult to follow. In this paper, a proof of the
pairing of Lyapunov exponents for hard-sphere systems at constant kinetic
energy is presented, based on a very simple explicit geometric construction,
similar to that of Ruelle. Generalizations of this construction to higher dimen-
sions and arbitrary shapes of scatterers or particles are trivial. This construction
also works for hard-sphere systems in an external field with a Nosé–Hoover
thermostat. However, there are situations of physical interest, where these
proofs of conjugate pairing rule for systems interacting via hard-core inter-par-
ticle potentials break down.

KEY WORDS: Lorentz gas; hard-sphere systems; lyapunov exponents; conju-
gate pairing rule.

1. INTRODUCTION

Thermostatted, field-driven systems have been popular models for non-
equilibrium molecular dynamics (NEMD) simulation studies of transport
processes in fluids. NEMD studies consider systems with a large number of
particles interacting with each other, driven by an external field. (1, 2) In
these studies, the thermostat continuously removes the energy generated



inside the system due to the work done on it by the external field, by means
of a dynamical friction term in the equations of motion. One finds that for
these systems, a non-equilibrium steady state (NESS), homogeneous in
space, is reached after a sufficiently long time. (3–8) Here we consider a par-
ticular kind of thermostat, where the friction is linearly coupled to the
laboratory momenta and keeps the total laboratory kinetic energy of
the particles constant (i.e., isokinetic Gaussian thermostat coupled to the
laboratory momenta). The dynamical description of these systems, would
be Hamiltonian in the absence of this thermostat, and the corresponding
Hamiltonian system, obtained by dropping the dynamical friction term from
the equations of motion, will be referred to as the background Hamiltonian
system. Due to the presence of the dynamical friction terms in the equa-
tions of motion, such a system is no longer Hamiltonian with a conserva-
tion of phase space volumes, but instead is phase-space contracting. (1, 9) The
sum of all the Lyapunov exponents, which measures the rate of long-time
exponential growth of phase-space volume, for such a system is thus
negative. (9) Of course, the background Hamiltonian system, if chaotic, is
such that the Lyapunov exponents sum up to zero. Furthermore, due to its
symplectic form, the Lyapunov exponents of the background system come
in pairs such that the sum of each such pair is also zero. (10, 11) The pheno-
menon of such pairing of Lyapunov exponents, where the sum of each pair
of non-zero exponents takes a constant value independent of the partic-
ular pair, is known as the conjugate pairing rule (CPR). Dettmann and
Morriss (12) have studied the isokinetic Gaussian thermostatted field-driven
systems that are under consideration here, assuming that the particles of
the system interact with smooth pair potential energies, and that the forces
on the particles due to the external field depends only on their positions.
They have proved that under these conditions, in a restricted subspace of
the phase space of all the particles, characterized by all the non-zero
Lyapunov exponents, such a system is m-symplectic.2 As a consequence, the

2 For a definition of m-symplecticity condition, see Eqs. (8) and (9) of this paper. The usual
symplectic condition is a particular case of Eq. (8) with m=1.

CPR is exactly satisfied in that subspace, and it is independent of the
number of particles in the system (corresponding simulation results can be
found in refs. 13 and 14)—the sum of each pair comes out to be the same
negative constant. One important consequence of this result is that the
macroscopic transport coefficients of these systems, in the linear order, can
be obtained from this constant value of the sum (see, for example ref. 15).
The restricted subspace, characterized by all the non-zero Lyapunov expo-
nents, is identified by observing that with an isokinetic Gaussian thermo-
stat, trajectories of the system always lie on a constant total kinetic energy
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hypersurface in the phase space of all the particles. This constraint gener-
ates a zero Lyapunov exponent. Also, two points in the phase space do not
separate exponentially in time if one point is chosen in the direction of flow
of the other. This generates another zero Lyapunov exponent.
As hard-core inter-particle interaction can be dealt as a limiting case

of a very short range smooth potential, one would expect that in this
restricted subspace, the system is still m-symplectic, and as a result, the
CPR will continue to hold for a field-driven isokinetic Gaussian thermo-
statted system with hard-core inter-particle interactions. The corresponding
pairing of Lyapunov exponents for hard-sphere systems has been proved
by direct means using the differential geometric structure of the phase
space, by Wojtkowski and Liverani. (16) Another version of the proof for
hard-sphere systems has been obtained by Ruelle. (17) The above two
approaches for hard-sphere systems are somewhat difficult to follow. The
purpose of this paper therefore, is to present a proof of the pairing of
Lyapunov exponents (also by direct means) for hard-sphere systems at
constant kinetic energy, based on a very simple explicit geometric con-
struction, similar to that used by Ruelle. Two kinds of field-driven isokinetic
Gaussian thermostatted systems with hard-core interaction are considered
here: in Section 2, the proof of the CPR is carried out for the three-dimen-
sional Lorentz gas, where mutually non-interacting point particles suffer
specular collisions with fixed spherical scatterers. In Section 3, the proof is
then carried out for a gas of hard spheres. The explicit method of this
paper allows one to identify the dependence of these approaches (described
in refs. 16 and 17 and here) on the geometrical shapes of the scatterers (or
the particles, as the case may be) and on the nature of the externally
applied field. Based on it, generalizations to higher dimensions, to arbitrary
geometry of the scatterers or the particles, and to the case where the masses
of the particles are arbitrary, become trivial. Finally, in Section 4, we argue
that this construction can be used to prove the CPR for hard-sphere
systems in an external field with a Nosé–Hoover thermostat. We also iden-
tify situations of physical interest, where these approaches break down.

2. PROOF OF THE CPR FOR THREE-DIMENSIONAL LORENTZ GAS

The Lorentz gas model consists of a set of scatterers fixed in space
together with mutually non-interacting moving particles that suffer elastic,
specular collisions with the scatterers. Here we consider the version of the
model in three dimensions where the scatterers are hard spheres, and are
placed in space without overlapping. Each of the moving particles is a
point particle with unit mass (m=1), and is subjected to an external force
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that depends only on its position, as well as a Gaussian thermostat which is
designed to keep its kinetic energy at a constant value. During a flight, the
equation of motion of a particle is

Ċ=[rḞ, pḞ]=[pF, FF −apF], (1)

where FF=−NFf is the force on the particle due to the external field and a is
the coefficient of dynamical friction representing the isokinetic Gaussian
thermostat. The value of a is obtained from the fact that the kinetic energy
of the particle p

2

2 is constant during a flight, i.e.,

a=
FF · pF
p2

(2)

and without any loss of generality, the time hereafter is rescaled such that
p2=1. At a collision with a scatterer, the post-collisional position and
momentum of a particle, C+=[rF+, pF+], are related to its pre-collisional
position and momentum C−=[rF− , pF−], by

C+=QC−=[rF− , pF− −2 (pF− · n̂) n̂], (3)

where n̂ is the unit vector from the center of the scatterer to the point of
collision (see Fig. 1).
It is sufficient to consider the motion of only one of the moving par-

ticles in its six-dimensional phase space to investigate the chaotic properties
of this system, since they do not interact with each other. To obtain the
Lyapunov exponents, we consider a particle at the phase space location
C0 — [rF0, pF0] at time t=0. In time t, it suffers s sequential collisions at time
instants t1, t2,..., ts with the scatterers. In between collisions, the particle
undergoes flights, acted upon by the external field. We refer to the phase

2an

φ
φ

p

p
+

Fig. 1. Dynamics of the point particle at a collision in two-dimensional projection.

708 Panja



space trajectory of it as the ‘‘reference trajectory.’’ We also consider
another particle at C0+dC0 — [rF0+dr

Q

0, pF0+dp
Q

0] at time t=0, such that C0
and C0+dC0 are infinitesimally apart from each other. This particle suffers
the same sequence of collisions and likewise its movement in the phase
space generates the ‘‘adjacent trajectory.’’ The two trajectories remain
infinitesimally apart from each other at all times. Let H(tj−tj−1) denote
the time evolution operator for dC(t) due to a flight between time instants
tj−1 and tj and let Mi denote the evolution operator for dC(t) at the ith
collision. For 0 < t1 < t2 < · · · < ts < t, we therefore have

dC(t)=H(t− ts)MsH(ts−ts−1) · · ·M1H(t1) dC0=L(t) dC0 . (4)

Let us now also define another six-dimensional matrix T(t), such that
during a flight

ḋC(t)=T(t) dC(t) . (5)

The matrix L(t) can then be obtained from the solution of the differential
equation

Ḣ(t)=T(t) H(t), (6)

and Eq. (4), with the boundary condition that H(0)=L(0)=I. The
Lyapunov exponents, measuring the rate of exponential separation between
the reference point and adjacent point in this six-dimensional phase space
for long times, are then defined as the logarithms of the eigenvalues of the
matrix L, where

L=lim
tQ.
{[L(t)]T L(t)}1/2t . (7)

Clearly, there can be at most six Lyapunov exponents of this system,
two of which are zero due to the reasons explained in the introduction. For
our purpose, we need to select out a four-dimensional subspace of this six-
dimensional phase space where all the Lyapunov exponents may be non-
zero. In this four-dimensional subspace, the proof of the CPR would follow
from the m-symplecticity property of L(t). (12, 16, 17) Thus, all we need to
prove to establish the CPR in this four-dimensional subspace is that there
exists a m(t), such that with the four-dimensional subspace representation
of L(t),

m(t) [L(t)]T J[L(t)]=J, (8)
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which is the m-symplecticity condition. Here, J is a 4×4 matrix with each
entry being a 2×2 matrix :

J=r 0 I
− I 0
s . (9)

Our goal is to prove Eq. (8) by means of the geometric construction,
developed in ref. 12.
The identification of this four-dimensional subspace is facilitated by

decomposing the six-dimensional position and momentum space of the
particle at every point on the reference trajectory, into two separate three-
dimensional subspaces, one for the position-space and the other for the
momentum-space. Next, in each of these two three-dimensional subspaces,
a unit vector ê0=pF is chosen and two other unit vectors ê1 and ê2 are also
chosen to form a complete set of orthonormal basis. One zero Lyapunov
exponent, which occurs due to the fact that dp

Q

must be chosen orthogonal
to ê0 in order to respect the constraint that p2=1, is avoided by measuring
dp
Q

by its components along the local directions of ê1 and ê2, i.e.,

dp
Q

=C
2

i=1
dpi êi . (10)

The other zero Lyapunov exponent, which occurs due to the fact that the
adjacent point does not exponentially separate from the reference point if
dr
Q

0 is chosen along ê0(t=0), is avoided by measuring dr
Q

also by its com-
ponents along the local directions of ê1 and ê2, i.e.,

dr
Q

=C
2

i=1
dri êi . (11)

Albeit ê0, being the momentum of the particle, is uniquely defined at each
point on the reference trajectory, ê1 and ê2 can be chosen arbitrarily at
every point of the reference trajectory, maintaining the orthonormality
condition. This ambiguity in the local orientations of ê1 and ê2 can be
removed by an initial choice of ê1(t=0) and ê2(t=0) at (rF0, pF0) and sub-
sequently connecting the orthonormal set of basis vectors at different
points on the reference trajectory by means of a ‘‘parallel transport.’’ The
construction and parallel transport of these basis vectors are the key
components of the proof of the m-symplecticity in this procedure.
To this end, we first concentrate on the evolution of dC(t) during the

process of a flight of the particle, which is a special case of the systems that
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Dettmann and Morriss (12) have considered, where f is the potential due to
only the external field. Following their construction, we therefore use

ė̂i=−(FF · êi) ê0, i=1, 2 (12)

while the parallel transport of ê0 is obtained from the equations of motion,
Eq. (1), i.e.,

ė̂0=C
2

i=1
(FF · êi) êi . (13)

From Eq. (1), having obtained

Ċ=5ê0, C
2

i=1
(FF · êi) êi6 , (14)

it is then easy to show that during a flight

dri
·
=dpi and dpi

·
=C

2

j=1
[−NiNjf−(FF · êi)(FF · êj)] drj−a dpi .

(15)

Consequently, the matrix T can be expressed as

T=r 0 I
Rf −aI
s, (16)

where each of the elements in T above is a 2×2 matrix and Rf is a sym-
metric matrix. The matrix T in Eq. (16) has the property that

TTJ+JT=−aJ, (17)

from which it can be easily shown that for a flight between tj−1 and tj

m(tj−tj−1) [H(tj−tj−1)]T J [H(tj−tj−1)]=J, (18)

where m(tj−tj−1)=exp [> tjtj−1 a(tŒ) dtŒ] along the reference trajectory.
Next, we study the evolution of the infinitesimal volume element dC

due to a collision with a scatterer to obtain a similar four-dimensional
representation of the matrix M, defined in Eq. (4). We notice that even
though Eqs. (12) and (13) uniquely determine the orientations of the basis
vectors over a flight given their orientation at the initiation of the flight,
the equations of parallel transport connecting the pre-collisional and post-
collisional basis vectors are still lacking. As the post-collisional momentum
of the particle ê0+ can be related to its pre-collisional momentum ê0− by

ê0+=ê0− −2 (ê0− · n̂) n̂, (19)

Elementary Proof of Lyapunov Exponent Pairing 711



over a collision [see Eq. (3)], a parallel transport of the orthonormal basis
vectors that serves our purpose, can be completed also by using

êi+=êi− −2 (êi− · n̂) n̂ i=1, 2. (20)

With the use of Eqs. (10), (11), (19), and (20), we now show that as the
infinitesimal pre-collisional phase space separation can be written as

dC−=[dr
Q

− , dp
Q

−]=5C
2

i=1
dri− êi− , C

2

i=1
dpi− êi− 6 , (21)

the corresponding infinitesimal post-collisional separation, dC+, can then
be expressed as

dC+=[dr
Q

+, dp
Q

+]=5C
2

i=1
dri+ êi+, C

2

i=1
dpi+ êi+6 , (22)

which would also reduce the collision dynamics of dC(t) to four dimen-
sions. We want to obtain the symplectic property of the 4×4 matrix M,
defined by

dC+=M dC− . (23)

We begin by studying Fig. 2, which is the two-dimensional projection
of an exaggerated picture of a collision that is taking place in three-dimen-
sions. The plane D− , perpendicular to the reference trajectory at its point of
collision A intersects the adjacent trajectory at B. While dr

Q

−=AB
Q

, dp
Q

− too
lies on the plane D− . Similarly, D+ is the plane that is perpendicular to the
reference trajectory at D passing through C, the point of collision of the
adjacent trajectory. The post-collisional position-space separation between
the two trajectories, dr

Q

+=DC
Q

and dp
Q

+ also lies on the plane D+. Clearly,
there is a time gap dy between the two collisions at A and C (i.e., the time
required for the adjacent point to travel from B to C), given by

dy=−
dr
Q

− · n̂
ê0− · n̂

. (24)

Following the procedure outlined in ref. 18, we find that the infinitesimal
phase space separation of the two trajectories just before the two collisions
at A and C is

dCg=dC−+Ċ− dy (25)
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Fig. 2. A two-dimensional projection of the three-dimensional collision dynamics of the
reference and adjacent trajectories.

and consequently,

dC+=
“Q
“C−
·dCg− Ċ+ dy (26)

where Ċ− (Ċ+) is obtained from the equations of motion of the particle for
the flight immediately before and after the collision at A [see Eq. (14)],
i.e.,

Ċ±=5ê0± , C
2

i=1
(FF g · êi± ) êi± 6 (27)

(FF g is the force on the reference point due to the external field at the point
of collision at A) and

“Q
“C−
=r I 0

−2 ê0− ·5
“n̂
“rF−
n̂+n̂

“n̂
“rF−
6 I−2n̂n̂
s (28)

[obtained from Eq. (3)]. Starting with the expression of dr
Q

+, we obtain,
from Eqs. (19) and (24)–(28) that

dr
Q

+=dr
Q

− −2(dr
Q

− · n̂) n̂, (29)
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which, together with Eqs. (20)–(22) yields

ê0+ ·dr
Q

+=0 and dri+=dri− i=1, 2 (30)

In a similar manner, the expression of dp
Q

+ can also be easily obtained from
Eqs. (26)–(28), i.e.,

dp
Q

+=A ·dr
Q g
−+(I−2n̂n̂) dp

Q

−+(I−2n̂n̂)

× C
2

i=1
(FF g · êi− ) êi− dy− C

2

i=1
(FF g · êi+) êi+ dy, (31)

where A=−2ê0− · [
“n̂
“rF−
n̂+n̂ “n̂

“rF−
] and dr

Q g
−=(dr

Q

−+ê0− dy) is the infinitesi-
mal vector AC

Q

lying on the surface of the scatterer (see Fig. 2).
The simplification of the expression on the r.h.s. of Eq. (31) is carried

out in Appendix A. After collecting all the terms together from Eqs. (A1),
(A2), and (A5), we obtain

dpi+=C
2

j=1

5dij dpj− −2 3
(FF g · n̂)(êi− · n̂)(êj− · n̂)

(ê0− · n̂)

+
1
a
(êi− · n̂)(êj− · n̂)+dij (ê0− · n̂)2

(ê0− · n̂)
4 drj− 6 . (32)

One can now see from Eqs. (23), (29) and (32) that the 4×4 matrix M
has the following structure

M=r I 0
Rc I
s, (33)

where the 2×2 matrix Rc is symmetric. This allows us to conclude that in
the four-dimensional subspace representation, the transformation of dC
over a collision is symplectic, i.e.,

MTJM=J. (34)

Finally, using Eqs. (4), (18), and (34) and m(t)=exp [> t0 a(tŒ) dtŒ], the four-
dimensional subspace representation, L(t) is seen to be m-symplectic. The
four non-zero Lyapunov exponents of this system can therefore be arran-
ged in pairs such that the sum of each pair is exactly equal to −OaPt, the
negative of the long time average of a along the reference trajectory, i.e.,
the CPR is exactly satisfied for this system in the restricted four-dimen-
sional subspace.
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2.1. Further Generalizations of this Geometric Construction

We end this section with the following generalizations:

(i) The proof can be extended to any arbitrary dimensions, simply
by including appropriate number of unit vectors êi’s.

(ii) Equation (32) demonstrates the role of geometry of the scatterers
and the effect of the external field on the symmetry property of Rc, as
having a symmetric Rc is essential for the symplecticity of M [and conse-
quently, the m-symplecticity of L(t)]. The effect of the geometry of the
scatterers is coded in the A ·dr

Q g
− term of Eq. (31). For nonspherical scat-

terers, this geometric construction works, so long as the surfaces of the
scatterers are smooth. One has to notice that at the collision point A (see
Fig. 1) on an (n−1)-dimensional surface embedded in an n-dimensional
Euclidean manifold, dr

Q g
− is the infinitesimal vector AC

Q

along the surface of
the scatterer, and since dn

Q

appearing in Eq. (A4) is the infinitesimal differ-
ence between the two unit normal vectors to the surface of the scatterer at
A and C, for a smooth surface, one can define an n×n symmetric matrix B,
such that dn

Q

=B ·dr
Q g
− . In general, the form of the matrix B depends on the

shape of the surface of the scatterer at collision point A. As a special case,
if the scatterer is spherical, then B can be explicitly constructed to be the
identity matrix times the inverse radius of curvature of the sphere. In terms
of B, one then simply needs to obtain the form of A ·dr

Q g
− , analogous to

Eq. (A5), given below as

A ·dr
Q g
−=2 C

n−1

i, j=1

5(êi− · n̂)(êj− ·B · ê0− )+(êj− · n̂)(êi− ·B · ê0− )

−(ê0− · n̂)(êi− ·B · êj− )−
ê0− ·B · ê0−
ê0− · n̂

(êi− · n̂)(êj− · n̂)6 drj− êi+ .
(35)

The term in square bracket in Eq. (35) is symmetric in i and j, which
contributes the symmetry of the matrix Rc in Eq. (33). However, the role
of external field on the symmetry of Rc is a bit more subtle—the
FF g-dependent term in Eq. (32) arises due to the fact that the reference and
the adjacent trajectories do not collide the same scatterer at the same instant,
despite the fact that collisions between the particles and the scatterers are
instantaneous. As Eq. (27) shows, we have used the fact that both the
dynamics of C− and C+ involve the same force FF g, which is possible only if
the pre- and the post-collisional values of FF g (i.e., appropriate FF g

− and FF
g
+)

are the same. One can therefore conclude that this construction can be
generalized toproveCPRfor arbitrary (smooth) shapes of the scatterers in any
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dimensions, when the forces on the particles due to the external field
depends only the particles’ positions.

(iii) The proof does not depend on the specific locations of the scat-
terers, and hence the CPR holds for any arrangement of the scatterers in
space.

3. PROOF OF THE CPR FOR HARD SPHERE GAS IN THREE

DIMENSIONS

In this section, we consider a gas of N identical moving spheres in
three-dimensions. Each of the spheres has a unit mass and is subjected to
an external force that depends only on its position, as well as a Gaussian
thermostat which keeps the total kinetic energy of the system at a constant
value. The spheres interact with each other by means of binary elastic
collisions. During a flight, where no collision takes place between any two
of the spheres, the equations of motion of the system are

rḞiŒ=pFiŒ, pḞiŒ=FFiŒ−apFiŒ, iŒ=1· · ·N (36)

where FFiŒ is the external force on the iŒ th sphere and a is the coefficient of
dynamical friction representing the isokinetic Gaussian thermostat (here-
after primed indices will always indicate sphere numbers). The value of a is
set in a way that it keeps the total kinetic energy of the system, ;N

iŒ=1
p
2
i−
2

constant, i.e.,

a=5 C
N

iŒ=1
FFiŒ · pFiŒ6;5 C

N

iŒ=1
p2iŒ6 . (37)

As before, we rescale the time such that ;N
iŒ=1 p

2
iŒ=1. At a collision

between the iŒth and the j Œ th spheres, the post-collisional positions and
momenta are related to the pre-collisional values by

rFiŒ+=rFiŒ− , rFj Œ+=rFj Œ− , pFiŒ+=pFiŒ− −{(pFiŒ− −pFj Œ− ) · n̂iŒj Œ} n̂iŒj Œ and

pFj Œ+=pFj Œ−+{(pFiŒ− −pFj Œ− ) · n̂iŒj Œ} n̂iŒj Œ, (38)

where n̂iŒj Œ is the unit vector along the line joining the center of the iŒth
sphere to the j Œth sphere at the time of the collision. Since such a collision
is instantaneous, during any such binary collision process, the positions
and momenta of the spheres not participating in the collision do not
change.
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We define the 3N-dimensional vectors RF and PF , assembled respectively
from the three-dimensional position and momentum vectors of the N
spheres, such that

RF=[rF1, rF2,..., rFN] and PF=[pF1, pF2,..., pFN], (39)

with P2=1. We also form two more 3N-dimensional vectors FF and N̂iŒj Œ : FF
describes the external force on the spheres, and N̂iŒj Œ is assembled from the
unit vector n̂iŒj Œ; i.e.,

FF=[FF1, FF2,..., FFN] and N̂iŒj Œ=
1

`2
[0F, 0F,..., n̂iŒj Œ,..., , −n̂iŒj Œ,..., 0F],

(40)

such that the iŒth and the j Œth entries of N̂iŒj Œ (they are the only non-zero
entries) are n̂iŒj Œ/`2 and −n̂iŒj Œ/`2 respectively [satisfying the normaliza-
tion condition N̂iŒj Œ · N̂iŒj Œ=1]. Equations (36) and (37) can now be rewritten
[in the same form as Eqs. (1) and (2)] as

Ċ=[RḞ , PḞ]=[PF , FF −aPF], with a=FF ·PF , (41)

while the collision dynamics can be rewritten as

C+=QC−=[RF − , PF− −2(PF− · N̂iŒj Œ) N̂iŒj Œ], (42)

analogous to Eq. (3). As discussed in the introduction, the geometric con-
struction associated with Eqs. (39)–(42) can be obtained as an extension of
the corresponding constructions for the three-dimensional Lorentz gas. We
will see that the construction of the unit normal vector N̂iŒj Œ is the key
component of the proof of m-symplecticity and the CPR for hard-sphere
gases.
The proof of the CPR proceeds exactly in the same way as it has

been described in Section 2. The time evolution of the infinitesimal
6N-dimensional phase space separation C(t) between the reference and the
adjacent trajectories can be decomposed by means of 6N-dimensional H
and M matrices as in Eq. (4). The (6N−2)-dimensional reduction of H
matrices can be subsequently obtained by constructing N 3N-dimensional
basis vectors ê0(t=0), ê1(t=0), ., ., ., ., ê(3N−1)(t=0) at C0, and then paral-
lelly transporting them using equations analogous to Eqs. (12) and (13) and
choosing to measure both dR

Q

and dP
Q

in directions orthogonal to ê0 in the
same manner as in Eqs. (10) and (11). As a special case of what Dettmann
and Morriss considered, (12) in terms of the (6N−2)-dimensional represen-
tation, the matrix H(tj−tj−1) is easily seen to be m-symplectic with
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m(tj−tj−1)=exp [> tjtj−1 a(tŒ) dtŒ] along the reference trajectory, for a flight
between tj−1 and tj. What remains to be shown, therefore, is that the
matrixM describing the transformation of dC(t) due to a binary collision is
also symplectic. To this end, following Section 2 of this paper, we use a
simple extension, comprising of the same form of parallel transport (as in
Eqs. (19) and (20)) of the N basis vectors ê0, ê1,..., ê(3N−1) over the binary
collision between the iŒth and the j Œth sphere, i.e.,

ê0+=ê0− −2(ê0− · N̂iŒj Œ) N̂iŒj Œ and

êi+=êi− −2(êi− · N̂iŒj Œ) N̂iŒj Œ 1 [ i [ (3N−1) (43)

Evaluation of the expression of M in this (6N−2)-dimensional repre-
sentation is a bit more involved than that presented in Section 2.
Nevertheless, one can still use Fig. 2 to illustrate the collisions at A and C
and the construction of the planes D− and D+ in a schematic way, keeping
in mind that this time the diagram describes quantities in 3N-dimensions
(for another version of Fig. 2 in the context of hard-sphere gases, the
reader may also find Fig. 6 in ref. 19 helpful). We will follow the logical
steps described in Eqs. (24)–(28) to obtain the expressions of dX

Q

+ and
dP
Q

+. Let us first define below the 6N dimensional vector dC± describing
the infinitesimal post(pre)-collisional phase-space separations of the two
trajectories

dC±=[dR
Q

± , dP
Q

± ]=[dr
Q

1± ,..., dr
Q

N± , dp
Q

1± ,..., dp
Q

N± ]

=5 C
3N−1

i=1
dRi± êi± , C

3N−1

i=1
dPi± êi± 6 . (44)

We observe that the time lag between the binary collisions, involving
the iŒth and the j Œth sphere on the reference and the adjacent trajectories
(schematically at A and C respectively in Fig. 2) is

dy=−
(dr

Q

j Œ− −dr
Q

iŒ− ) · n̂iŒj Œ
(pFj Œ− −pFiŒ− ) · n̂iŒj Œ

=−
dR
Q

− · N̂iŒj Œ
ê0− · N̂iŒj Œ

. (45)

Following the procedure outlined in ref. 18, we find that the infinite-
simal phase space separation of the two trajectories at A and C is, as
before,

dCg=dC−+Ċ− dy and dC+=
“Q
“C−
·dCg− Ċ+ dy, (46)
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where Ċ− (Ċ+) is obtained from the equations of motion of the system for
the flight immediately before and after the collision at A [from Eq. (41)],
i.e.,

Ċ±=5ê0± , C
2

i=1
(FF g · êi± ) êi± 6 . (47)

Here FF g is the force on the reference point, described in Eq. (40), due to the
external field at the point of collision at A. Using Eq. (42),

“Q
“C−
=r I 0

−2 ê0− ·5
“N̂iŒj Œ
“RF −

N̂iŒj Œ+N̂iŒj Œ
“N̂iŒj Œ
“RF −
6 I−2N̂iŒj ŒN̂iŒj Œ

s , (48)

where each entry of the matrix on the r.h.s. of Eq. (48) is a 3N×3N
matrix.
Starting with the expression of dR

Q

+, once again we obtain, from Eqs.
(43) and (45)–(48) that

dR
Q

+=dR
Q

− −2 (dR
Q

− · N̂iŒj Œ) N̂iŒj Œ, (49)

which, together with Eq. (43) yields

ê0+ ·dR
Q

+=0 and dRi+=dRi− 1 [ i [ (3N−1) (50)

In a similar manner, the expression of dP
Q

+ can also be easily obtained from
Eqs. (46)–(48), i.e.,

dP
Q

+=A ·dR
Q g
−+(I−2N̂iŒj ŒN̂iŒj Œ) dP

Q

−

+(I−2N̂iŒj ŒN̂iŒj Œ) C
3N−1

i=1
(FF g · êi− ) êi− dy− C

3N−1

i=1
(FF g · êi+) êi+ dy, (51)

where A=−2ê0− · [
“N̂iŒjŒ

“RF −
N̂iŒj Œ+N̂iŒj Œ

“N̂iŒjŒ

“RF −
] and dR

Q g
−=(dR

Q

−+ê0− dy). The
simplification of the expression of dP

Q

+ is carried out in Appendix B.
Finally, using Eqs. (B1) and (B2) and (B6) and (B7), we obtain that in
terms of the (6N−2)-dimensional representation, the matrix M can be
written in the form

dPi+= C
3N−1

j=1

5dij dPi−+3Wij−2 C
3N−1

i, j=1

(FF g · N̂iŒj Œ)(êi− · N̂iŒj Œ)(êj− · N̂iŒj Œ)
(ê0− · n̂)

4 dRj− 6

(52)

where Wij=Wji has been evaluated in Eq. (B18) in Appendix B. Equation
(52), together with Eqs. (50)–(51) implies that M has the same form as in
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Eq. (33), where the (3N−1)×(3N−1) matrix Rc is symmetric. This again
allows us to conclude that in the (6N−2)-dimensional subspace repre-
sentation, M is symplectic, and L(t) is m-symplectic with m(t)=
exp[> t0 a(tŒ) dtŒ], i.e., the CPR is exactly satisfied in the restricted
(6N−2)-dimensional subspace for this system.

3.1. Further Generalizations of this Geometric Construction

We end this section with the following observations:

(i) the condition that each sphere is of unit mass is not essential—if
the iŒth particle has a mass miŒ, one can define the new quantities rF

−

iŒ=
m
1
2
iŒrFiŒ, pF

−

iŒ=m
−12
iŒ pFiŒ and FF

−

iŒ=m
−12
iŒ FFiŒ and then begin with the Eqs. (36)–(38)

replacing rFiŒ’s, pFiŒ’s and FFiŒ’s by the corresponding primed variables. One
also needs to use

N̂ −iŒj Œ=50F, 0F,...,=
mj Œ

miŒ+mj Œ
n̂iŒj Œ,..., , −=

miŒ
miŒ+mj Œ

n̂iŒj Œ,..., 0F6 , (53)

such that the iŒth and the j Œth entries of N̂ −iŒj Œ (they are the only non-zero
entries) are ` mjŒ

miŒ+mjŒ
n̂iŒj Œ and −`

miŒ
miŒ+mjŒ

n̂iŒj Œ respectively (satisfying the
normalization condition N̂ −iŒj Œ · N̂

−

iŒj Œ=1) and define a corresponding
6N×6N matrix UŒ (see Eqs. (B12) in Appendix B and its preceding para-
graph) such that

U −

iŒiŒ=
mj Œ
miŒ

U −

j Œj Œ=−=
mj Œ
miŒ

I, U −

iŒj Œ=U −

j ŒiŒ=I; (54)

(ii) the proof can be trivially extended to any arbitrary dimensions
by including appropriate number of unit vectors êi’s and
(iii) Following point (ii) of Section 2.1, it is easy to generalize this

construction, and hence the proof, to arbitrary (smooth) shapes of the par-
ticles. One simply needs to use an analogous symmetric matrix B such that
dN
Q

iŒj Œ=B ·dR
Q g
− . Just from Eq. (B3), one then obtains the same equation as

Eq. (35):

A ·dR
Q g
−

=2 C
n−1

i, j=1

5(êi− · N̂iŒj Œ)(êj− ·B · ê0− )+(êj− · N̂iŒj Œ)(êi− ·B · ê0− )

−(ê0− · N̂iŒj Œ)(êi− ·B · êj− )−
ê0− ·B · ê0−
ê0− · N̂iŒj Œ

(êi− · N̂iŒj Œ)(êj− · N̂iŒj Œ)6 dRj− êi+ .
(55)
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Notice already the striking similarity of the term inside the square brackets
in Eqs. (35) and (55) to the form of Wij in Eq. (B18). When the nN×nN
matrix B is decomposed into N×N blocks of n×n matrices, the only non-
zero entries are BiŒiŒ, BiŒj Œ, Bj ŒiŒ and Bj Œj Œ, corresponding to the two colliding
particles iŒ and j Œ. As a special case, if these particles are spheres, then the
matrix B can be explicitly constructed to be U/[`2 (aiŒ+aj Œ)], where aiŒ
and aj Œ are the radii of the colliding particles (21) (in Appendix B, we have
used aiŒ=aj Œ=a). The factor of `2 follows from Eqs. (40) and (B4). Once
again, the form of Eqs. (55) contributes the symmetry of Rc. In a similar
manner as explained in point (iii) of Section 2.1, the symplecticity property
of M (and hence the m-symplecticity of L(t) crucially hinges upon the
symmetry of Rc, for which it is necessary to have the expression of FF g to be
invariant under a collision.

4. DISCUSSION

While much of the content of this paper is technical, the underlying
principle behind our discussion of the CPR is similar to those in the exist-
ing literature. (16, 17) First, the dimension of the phase space is identified
where all the Lyapunov exponents are non-zero. The dimension of this
reduced phase space, characterized by all the non-zero Lyapunov expo-
nents, depends on the number of macroscopic conserved quantities in the
problem (such as total momentum, total angular momentum, total energy
etc.) that are consistent with the dynamics. By means of confining the
dynamics to a hypersurface of dimension 1 less than that of the full phase
space, each such conserved quantity reduces the dimension of the phase
space characterized by all the non-zero Lyapunov exponents by 1. In addi-
tion, the fact that two points in the phase space do not separate exponen-
tially in time if one point is chosen in the direction of flow of the other,
reduces the dimension of the phase space characterized by the non-zero
Lyapunov exponents also by 1. The dynamics for systems with hard-core
inter-particle interactions are then decomposed into flights and collisions.
The dynamics of a flight segment in the reduced phase space is shown to be
m-symplectic as a special case of the explicit geometric construction in
ref. 12. By means of another simple explicit geometric construction, it is
also possible to incorporate the collisions in this formalism, which sub-
sequently leads one to evaluate the matrix M and demonstrate that it is
symplectic. Finally, the matrix L(t), assembled from the sequential pro-
ducts of the H and M matrices, is easily seen to be m-symplectic using the
fact that the product of a symplectic and a m-symplectic transformation is
m-symplectic. We must note here that the proof of CPR by this construction
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is sufficient and not necessary; and as a result, if a system does not satisfy
this proof, it is not guaranteed that CPR would not be satisfied for it.
Moreover, this explicit geometric construction, used in this paper for the
parallel transport of basis vectors, is by no means unique. One could con-
ceivably use a different set of equations for the parallel transport mecha-
nisms for both flight and collision parts of the dynamics to prove the CPR
for a dynamical system.
Questions naturally arise about the applicability of this construction for

other hard-particle systems. It turns out that using the same explicit geo-
metric construction that is presented here, CPR can also be proved for a gas
of hard particles (of finite sizes) in an external field (such that the forces on
the particles due to this field depend only on their positions of the particles)
under a Nosé–Hoover thermostat. One simply has to separate the time
evolution of dC in terms of the H and the M matrices in an appropriately
reduced phase space. The m-symplecticity of the H matrices can be trivially
obtained as a special case of ref. 20, where the CPR has been proved for a
system of particles that interact with each other by means of smooth inter-
particle potentials. The symplecticity property of theM matrices can also be
easily seen to be valid, if one combines the observation of point (ii) of
Section 3.1 with Eq. (15) of ref. 20. We have seen in point (ii) of Section 3.1
that for M to be symplectic, it is necessary that FF g be invariant under a
collision, and it is definitely the case with Eq. (15) of ref. 20.
Clearly, this explicit geometric construction allows one to see the role

of the external field in between collisions (that it is necessary for the force
on the particles due to the external field be dependent only on their posi-
tions), the role of FF g and the geometry of the colliding particles (or scat-
terers, as the case may be) for it to prove the CPR. However, these condi-
tions, under which this construction works to prove the CPR, are rather
restrictive in the context of NEMD studies of the transport quantities of
the systems of physical interest, as they exclude a class of very interesting
systems where the external force may depend on the momenta of the par-
ticles—for example, when the system is subjected to an additional external
magnetic field. Nevertheless, it has allowed us to prove an important
theoretical result regarding the CPR, for a gas of hard spheres under shear
ref. 21. It is also possible that this choice of parallel transport can be used
for numerical computations to achieve higher accuracy for the Lyapunov
exponents.
We end this paper with the observation that while this construction

uses explicit dependence on the co-ordinate system on a Euclidean mani-
fold, there exists a (co-ordinate independent) differential geometric method
(for example, in ref. 16) that allows one to work easily on non-Euclidean
manifolds (22) as well. How this present construction can be generalized
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to such non-Euclidean manifolds is presently unclear, but it remains a
challenging task for the future.

APPENDIX A

To simplify the expression of dp
Q

+, we break the r.h.s. of Eq. (31) into
several parts. First we notice that

(I−2n̂n̂) dp
Q

−=C
2

i=1
dpi− êi+ and (A1)

(I−2n̂n̂) C
2

i=1
(FF g · êi− ) êi− dy− C

2

i=1
(FF g · êi+) êi+ dy

=−2 C
2

i, j=1

(FF g · n̂)(êi− · n̂)(êj− · n̂)
(ê0− · n̂)

drj− êi+ . (A2)

Next, we observe that the rest of the r.h.s. of Eq. (31), i.e., A ·dr
Q g
− describes

the effect of the orientation of n̂ on dp
Q

+. Having denoted the unit vector
normal to the surface of the scatterer at C by n̂Œ, which can be related to n̂ by

n̂Œ=n̂+dn
Q

, (A3)

(n̂ ·dn
Q

=0), it is easily seen from Eqs. (25), (26), and (28) that

A ·dr
Q g
−=−2 [(ê0− ·dn

Q

) n̂+(ê0− · n̂) dn
Q

]. (A4)

Furthermore, using dn
Q

=dr
Q g
−/a, where a is the radius of the scatterer, The

expression of A ·dr
Q g
− can be readily simplified as

A ·dr
Q g
−=−

2
a

C
2

i, j=1

(êi− · n̂)(êj− · n̂)+dij (ê0− · n̂)2

(ê0− · n̂)
drj− êi+ . (A5)

APPENDIX B

Two terms on the r.h.s. of Eq. (51) simplify as before, i.e.,

(I−2N̂iŒj ŒN̂iŒj Œ) dP
Q

−= C
3N−1

i=1
dPi− êi+ and (B1)

(I−2N̂iŒj ŒN̂iŒj Œ) C
3N−1

i=1
(FF g · êi− ) êi− dy− C

3N−1

i=1
(FF g · êi+) êi+ dy

=−2 C
3N−1

i, j=1

(FF g · N̂iŒj Œ)(êi− · N̂iŒj Œ)(êj− · N̂iŒj Œ)
(ê0− · n̂)

dRj− êi+ . (B2)
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Following Section 2, the term A ·dR
Q g
− can be expressed as

A ·dR
Q g
−=−2 [(ê0− ·dN

Q

iŒj Œ) N̂iŒj Œ+(ê0− · N̂iŒj Œ) dN
Q

iŒj Œ], (B3)

where

dN
Q

iŒj Œ=
1

`2
[0F, 0F,..., dn

Q

iŒj Œ,..., , −dn
Q

iŒj Œ,..., 0F], (B4)

satisfying n̂iŒj Œ ·dn
Q

iŒj Œ=0. This orthogonality condition between n̂iŒj Œ and dn
Q

iŒj Œ

also implies that N̂iŒj Œ ·dN
Q

iŒj Œ=0; from which it can be readily shown that

ê0+ · [ A ·dR
Q g
−]=0, (B5)

In other words, we have

A ·dR
Q g
−= C

3N−1

i=1
{[A ·dR

Q g
−] · êi+} êi+ . (B6)

The full simplification of the expression [ A ·dR
Q g
−] · êi+ is carried out

below, where it is shown that

[A ·dR
Q g
−] · êi+= C

3N−1

j=1
Wij dR

Q

j, (B7)

with the property that Wij=Wji (see Eq. (B18)). The expression A ·dR
Q g
− ,

using Eq. (B3), can be written in the following form

A ·dR
Q g
−=[0F, 0F,..., AF iŒ,..., , −AF j Œ,..., 0F]; (B8)

such that all but the iŒ th and the j Œth entries on the r.h.s. of Eq. (B8) are
zero, while the j Œ th entry AF j Œ is related to the iŒth entry AF iŒ by [using
Eq. (B4)]

AF j Œ=−AF iŒ=[{(pFiŒ− −pFj Œ− ) ·dn
Q

niŒj Œ} n̂iŒj Œ+{(pFiŒ− −pFj Œ− ) ·dn
Q

iŒj Œ} dn
Q

iŒj Œ]. (B9)

To obtain an expression for dn
Q

iŒj Œ analogous to dn
Q

=dr
Q g
−/a as used in

Appendix A, we need to take a look at Figs. 3 and 4. Figure 3 describes, in
the laboratory frame, the binary collision process between the iŒth and the
j Œth sphere on the reference and adjacent trajectories; the thick-lined
spheres are on the reference trajectory whereas the thin-lined spheres are on
the adjacent trajectory. Figure 4 describes the same binary collision process
in the reference frame of the iŒth sphere (with center C). In Fig. 3, the thick-
lined j Œth sphere (with center D) on the left depicts the collision situation

724 Panja



Fig. 3. Collision between the iŒth and the j Œth sphere on the reference and adjacent trajec-
tories in the laboratory frame. Thick-lined spheres are on the reference trajectory whereas the
thin-lined spheres are on the adjacent trajectory.

on the reference trajectory and the thin-lined j Œth sphere (with center E) on
the left depicts the collision situation on the adjacent trajectory. Clearly, in
Fig. 4, the infinitesimal vector DFE is given by

dr
Q g
iŒj Œ=dr

Q

j Œ− −dr
Q

iŒ−+(pFj Œ− −pFiŒ− ) dy (B10)

and since the lengths of both the lines CD and CE are 2a (a is the radius of
each sphere), we have

dn
Q

iŒj Œ=
1
2a
dr
Q g
iŒj Œ . (B11)

Starting with the expression in Eq. (B6), we proceed to calculate the quan-
tity [A ·dR

Q g
−] · êi+. Let us first define a 3N×3N matrix U composed of

Fig. 4. Same collisions as in Fig. 3, in the reference frame of the iŒth sphere.
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N×N blocks of 3×3 matrices, such that, in terms of the block indices the
only non-zero entries of U are

UiŒiŒ=−UiŒj Œ=−Uj ŒiŒ=Uj Œj Œ=−I, (B12)

where I is the 3×3 unit matrix. The matrix U has the property that

UT=U and U · N̂iŒj Œ=−2N̂iŒj Œ . (B13)

Using Eqs. (B8)–(B11,) and (B13), one can then simplify [A ·dR
Q g
−] · êi+ as

[A ·dR
Q g
−] · êi+

=
`2

2a
(êi− · N̂iŒj Œ) C

3N−1

j=1

5(êj− ·U · ê0− )−(ê0− ·U · ê0− )
(êj− · N̂iŒj Œ)
(ê0− · N̂iŒj Œ)
6 dRj−

−
`2

2a
(ê0− · N̂iŒj Œ) C

3N−1

j=1

5(êi+ ·U · êj− )−(êi+ ·U · ê0− )
(êj− · N̂iŒj Œ)
(ê0− · N̂iŒj Œ)
6 dRj− .
(B14)

Equation (B14) can be further simplified by using

(êi+ ·U · ê0− ) (êj− · N̂iŒj Œ)={(êi− ·U · ê0− )+4 (êi− · N̂iŒj Œ) (ê0− · N̂iŒj Œ)} (êj− · N̂iŒj Œ),
(B15)

(êi+ ·U · êj− ) (ê0− · N̂iŒj Œ)={(êi− ·U · êj− )+4 (êi− · N̂iŒj Œ) (êj− · N̂iŒj Œ)} (ê0− · N̂iŒj Œ)
(B16)

and Eq. (B13), to obtain

[A ·dR
Q g
−] · êi+= C

3N−1

j=1
Wij dRj− , (B17)

where

Wij=Wji=
1

`2 a
5(êi− · N̂iŒj Œ) (êj− ·U · ê0− )+(êj− · N̂iŒj Œ)(êi− ·U · ê0− )

−(êi− ·U · êj− ) (ê0− · N̂iŒj Œ)−(êj− · N̂iŒj Œ) (êi− · N̂iŒj Œ)
(ê0− ·U · ê0− )
(ê0− · N̂iŒj Œ)

6 .
(B18)

Equation (B18) is then used in Eq. (B7).
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